
Concrete Pavement Preservation: The Key to Long-Life Pavements

Nicholas Davis Iowa Concrete Pavement Conference 2024

Topics of Discussion

- Pavement Preservation
- Improved use-phase cost and carbon impact
- Examples
- Federal Funding eligibility
- Other notable considerations
- IGGA Interactive CPP Tool on the new website

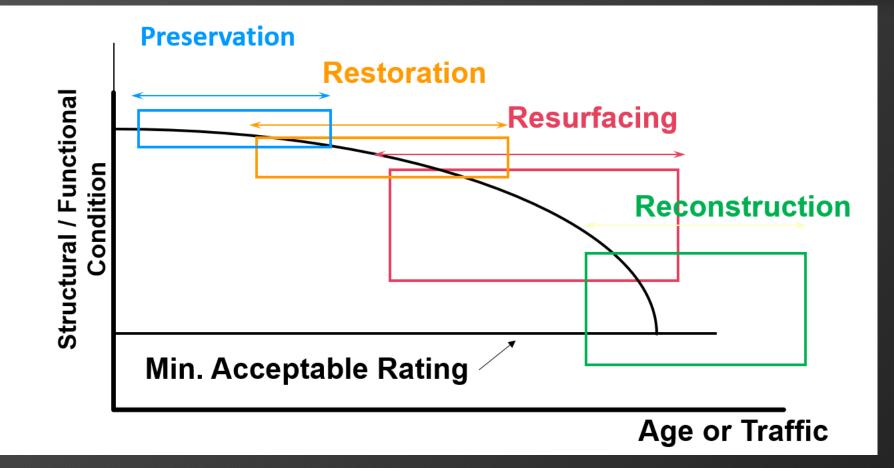
Pavement Preservation Philosophy

The Difference Between Preservation Techniques and Routine Repair Techniques?

Same treatments ...better TIMING!

World Bank's Evaluation

Transport Notes from the World Bank evaluated the relationship between maintenance timing and cost on South African highways.

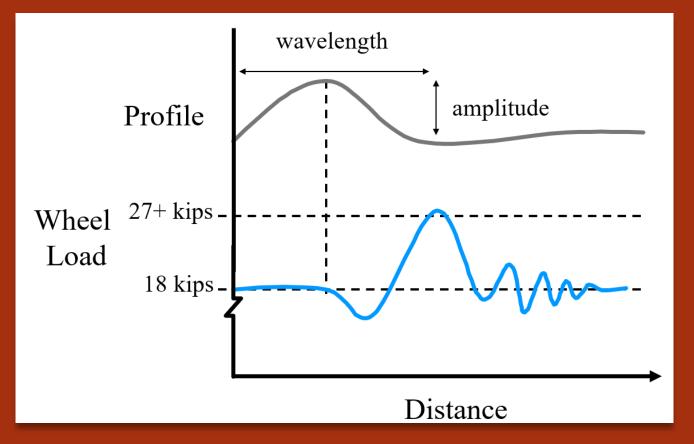

- It was determined that 3 years of maintenance neglect resulted in 6 times the repair cost.
- 5 years of neglect resulted in up to 18 times the repair cost.

MIT's Take

 Researchers at the MIT Concrete Sustainability HUB has suggested that the most carbon conscious approach is to perform CPR and Diamond Grinding every 15 years, as opposed to waiting 20+ years or overlaying with asphalt.

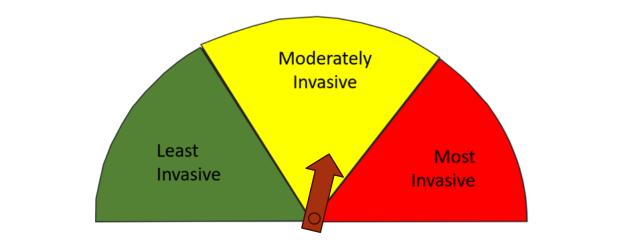
Rehabilitation Timing

Expected benefits?

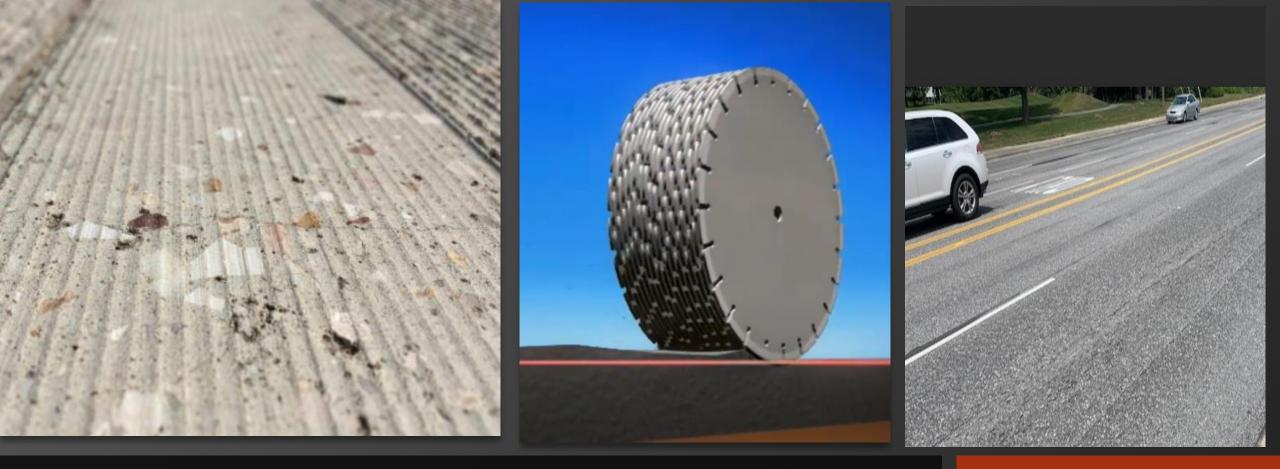

Preservation of investment

Improved pavement performance Long term cost savings/leveling

Increased safety Greater customer satisfaction Increased fuel economy


Rough Pavement

Smooth Pavement


What is the Cost of Pavement Repairs?

The less invasive a repair procedure is, the more cost effective it is and the less risk it carries.

Diamond Grinding

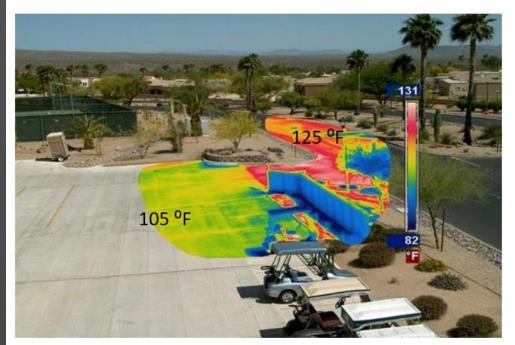
\$3-5 Per square yard \$28,000 per lane mile Moderately hard stone 12 lane mile project (100,000 sqyd)

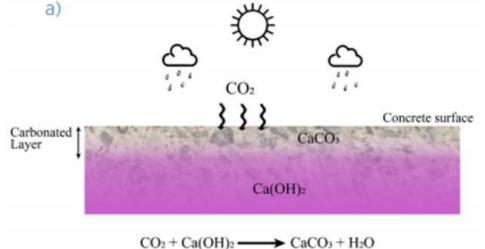
What is Diamond Grinding?

When you have soft aggregate

Safety groove can add macro texture and improved friction to pavements with polish prone aggregates

If a diamond grind project is underway, grooving will cost about \$2 a sqyd

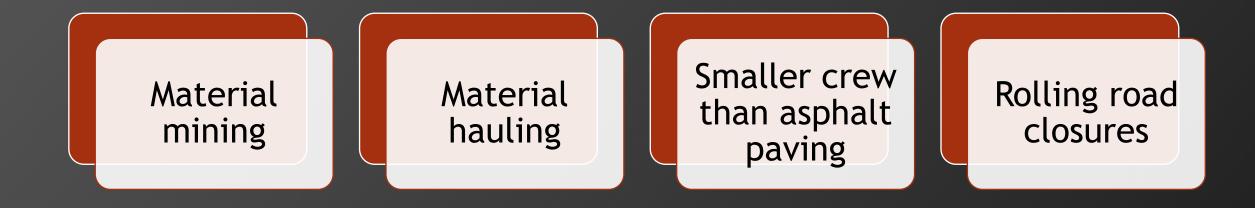

Fun Fact!


Diamond Grinding- Fun Fact

In Wisconsin, overall accident rates for ground surfaces were 40% less than for un-ground surfaces over a 6-year period, 57% in wet weather conditions

Other benefits of Diamond Grinding

Year 0 to 10: 6298lbs of carbon sequestered


Albedo is the ability of surfaces to reflect sunlight

Year 10 to 20: 2609lbs of carbon sequestered

Improve International Roughness Index by 50-70%

Why Is It The Most Cost-Effective Preservation Technique?

Alternative?

 Asphaltmagazine.com says an asphalt overlay of concrete can last 12 years when properly maintained

\$100 per ton \$86,000 per lane mile

WWW.IGGA.Net

IGGA Executional Grouving & Grinding Association

Fuel/Carbon Savings Calculator

Rigid Pavement Savings Calculator

MIT Concrete Sustainability Hub

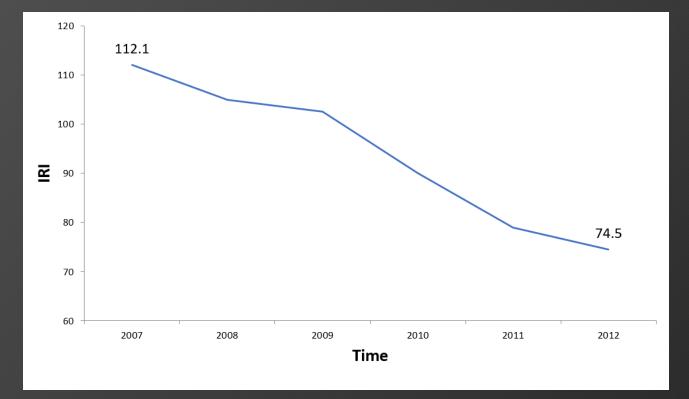
MIT Fuel/Carbon Savings Calculator

MIT CSHub

This app was developed using the concepts and models discussed in Journal of Cleaner Production in 2016. The Fuel/Carbon Saving App looks at an instantaneous improvement in IRI for a set amount of traffic on a daily basis. This daily savings can then be used to estimate annual savings for a set period of time. Estimating actual IRI for future years was considered but not used due to the fact that the estimates could never be confirmed. Allowing the user to extrapolate the findings on a daily level to an annual level was seen as the best estimate. Users should understand these are only estimates based on current traffic and smoothness calculations.

Estimated IRI Pre-Grind		Estimated IRI Post-Grind			
112	in/mi	75	in/mi	Calculations	
Traffic Speed		Average Dail	y Traffic	Cars Per Day	27,000
60	mph	30000		Trucks Per Day	3,000
				Daily Fuel Savings Per Mile	\$74.08
Percent Truck	<s %</s 			Annual Fuel Savings Per Mile	\$27,040.13

Cost/Carbon Savings Calculator- Actual Project Data


- What is the environmental and Financial benefit of IRI improvement?
 - Fuel/Carbon Savings Calculator IGGA | The International Grooving and Grinding Association

Example project

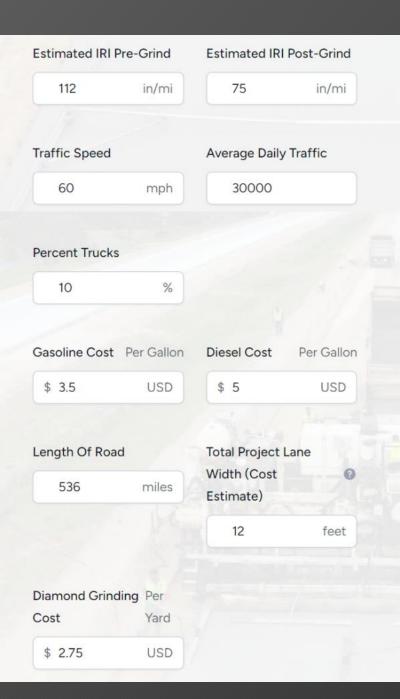
- Initial IRI: 98 in/mi
- Actual Final IRI: 43 in/mi
- AADT: 39, 152
- Percent trucks: 15%
- Length:6.6 miles
- Width: 4 lanes
- Cost to Grind: \$4.60 sqyd

Cost Carbon Benefit	Table			Print	
	10 Year Benefit		20 Year Benefit		
Category	Cost (\$)	Carbon (Metric Tons)	Cost (\$)	Carbon (Metric Tons)	
Fuel Savings for IRI	\$3,918,999.72	4559.63	\$7,837,999.45	9119.27	
Carbon Sequestration		20.78		29.39	
Cost of Grinding	(\$854,937.60)	(250.91)	(\$854,937.60)	(250.91)	
Total (savings)	\$3,064,062.12	4329.51	\$6,983,061.85	8897.76	

Kentucky PCC Interstate Improvement Project

Costs and Impact

IRI Improved from 112.1 to 74.5 in 5 years


Lowest recorded average IRI ever covering 536 miles

\$188,000 per lane mile

Diamond grinding had an avg. cost of \$2.75 per sq. yd. in KY over a 5-year period

Reconstruction cost would have been \$1.5 - \$2.5 million/lane mile

Preservation saved over \$1 Billion

Cost Carbon Benefit Table

Print

	10 Year Benefit	20 Year Benefit	
Category	Cost (\$)	Carbon (Metric Tons)	Cost (\$)
Fuel Savings for IRI	\$144,935,113.43	345246.12	\$289,870,226.85
Carbon Sequestration		4910.48	
Cost of Grinding	(\$10,376,960.00)	(10188.29)	(\$10,376,960.00)
Total (savings)	\$134,558,153.43	339968.32	\$279,493,266.85

How Good is it?

Pavement Diamond Grinding is the only highway treatment that can be cost and carbon negative!

Rigid pavement calculator

- 10 mile section of interstate In Des Moines zip code
- 2000 heavy commercial vehicles per day
- \$50,000 a year in fuel savings
- \$3.8 million over the pavements design life

MIT Concrete Sustainability Hub

Rigid Pavement Savings Calculator

CSHul

arbon Savings Calculato

The IGGA in partnership with the ACPA and MITs concrete sustainability HUB has developed this free-use online calculator for DOTs and other government agencies to quantify the fuel economy benefit of concrete pavements. Research shows that the more flexible a pavement is, the more it bends under the weight of traffic, particularly with heavy truck traffic. The result of this is the subtle but constant sensation of driving up hill, increasing fuel consumption. The more rigid a pavement is the less bending occurs and therefore the more flat the pavement is. Why does this matter? As stewards of the general public's interest, engineers should strive to optimize the monetary and environmental impact of highway systems. This calculator can be used to quantify the cost and carbon benefit of fuel saved while driving on a rigid concrete pavements. Note that while there is a passenger car benefit, it is considered negligible and therefore not included in this calculator. This calculator also assumes the pavements are of equal thickness and substructure.

10	Centerline Miles	12	FT	Calculations	
10	Centenine miles	12	FI		
Traffic Growth F	Rate	Analysis Period		First-Year Gallons Of Diesel Saved	14118.16
1.5	%	50	Years	First-Year Heavy	\$51,531.27
				Commercial Excess Cost	
Quantity Of Axle	es	Total Weight		Excess Cost	
4		80000	LBS	First-Year Annual Excess Carbon	158.55 Tons CO ₂ 336.15 Barrels
				Heavy-Duty	
Asphalt Modulu:	s Of Elasticity	Concrete Modulus Of	Concrete Modulus Of Elasticity		\$3,796,969.73
500000	PSI	4000000	PSI	Commercial Excess Cost	
				50-Year Annual	11682.18 Tons CO2 24768.23 Ba
MPG Heavy-Dut	IX.	Diesel Fuel Price	Per Gallon	Excess Carbon Heavy-Duty	
6.6	Miles/Gallon	\$ 3.65	USD	Theory Duty	
Zip Code		Speed Limit			
50310		60	MPH		
Heavy Commer	cial Average Annual D	aily Traffic			
2000			Vehicles		
-	Cal	culate			
	Car	culate	·····		

How Can This Help With Highway Funding?

Carbon Reduction Strategy

- Requires each State, in consultation with any MPO designated within the State, to- [§ 11403; 23 U.S.C. 175(d)]
 - o develop a carbon reduction strategy not later than 2 years after enactment; [§ 11403; 23 U.S.C. 175(d)(1)] and
 - o update that strategy at least every four years; [§ 11403; 23 U.S.C. 175(d)(3)]
- Requires the carbon reduction strategy to
 - o support efforts-and identify projects and strategies-to support the reduction of transportation emissions;
 - at the State's discretion, quantify the total carbon emissions from production, transport, and use of materials used in the construction of transportation facilities in the State; and
 - be appropriate to the population density and context of the State, including any MPO designated within the State. [§ 11403; 23 U.S.C. 175(d)(2)]
- Allows the carbon reduction strategy to include projects and strategies for safe, reliable, and cost-effective options to-
 - reduce traffic congestion by facilitating the use of alternatives to single-occupant vehicle trips, including public transportation facilities, pedestrian facilities, bicycle facilities, and shared or pooled vehicle trips within the State or an area served by the relevant MPO;
 - facilitate use of vehicles or modes of travel that result in lower transportation emissions per person-mile traveled as compared to existing vehicles and modes; and
 - facilitate approaches to the construction of transportation assets that result in lower transportation emissions as compared to existing approaches. [§ 11403; 23 U.S.C. 175(d)(2)(B)]
- Requires FHWA to-
 - review the State's process for developing its carbon reduction strategy and certify that the strategy meets statutory requirements; and
 - at the request of a State, provide technical assistance in the development of the strategy. [§ 11403; 23 U.S.C. 175(d)(4) and (5)]

Interactive CPP Toolkit

• Helps DOT's and Designers select the appropriate repairs for PCC pavement to help optimize repair spending.

Spalled Joints and Cracks

Faulted Joints

Subsurface Voids

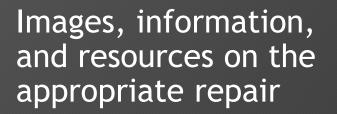
Cracked Slabs

Low-Severity Longitudinal **Cracks or Joints**

Low-Severity Transverse Cracks

Slab Warping or Unevenness

Joint Sealant Failure



Hydroplaning on Pavement

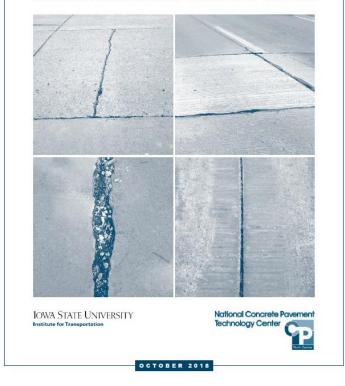
Learn About the Repair

CRACKED SLABS

If you have **cracked slabs**, you need to perform:

Full-Depth Repairs

Full-depth repair is the removal and replacement of full slab thickness sections of deteriorated pavement. Length can vary based on conditions present. A common minimum patch size is four to six feet long and a full lane width wide. This type of repair can be completed on both jointed and continuously reinforced concrete pavement. On jointed pavement, the transverse construction joints at the patch ends are typically doweled and/or tied to restore load transfer across the joints. Additionally, on longer patch sections, dowel bar assemblies are placed at intervals to coincide with the existing transverse joint pattern present. On continuously reinforced concrete, the reinforcing steel pattern of the existing pavement is removed and replaced with new steel within the repair section. The transverse repair boundaries are first sawed and jackhammered to


Other resources

Pavement repair guides produced by the National Concrete Pavement Technology Center (CPTECH Center)

GUIDE FOR

Concrete Pavement Distress Assessments and Solutions

IDENTIFICATION, CAUSES, PREVENTION & REPAIR

Total Benefits Smooth Concrete Pavements?

- 1. Better Fuel Economy
- Improved safety (40% reduction in accidents, 57% reduction in wet weather accidents for diamond ground pavements)
- 3. Reduced freight damage
- 4. Reduce maintenance spending
- 5. Reduced GHG Emissions for use-phase

Conclusion

Keep your pavements smooth; It's the most affordable option

> Nicholas Davis ndavis@IGGA.net

Find Out More at IGGA.net!