Heidelberg Materials

A Sustainable Concrete Journey

Lori Tiefenthaler 2/9/2024

Why this Sustainability Journey

Climate Change

The right thing to do

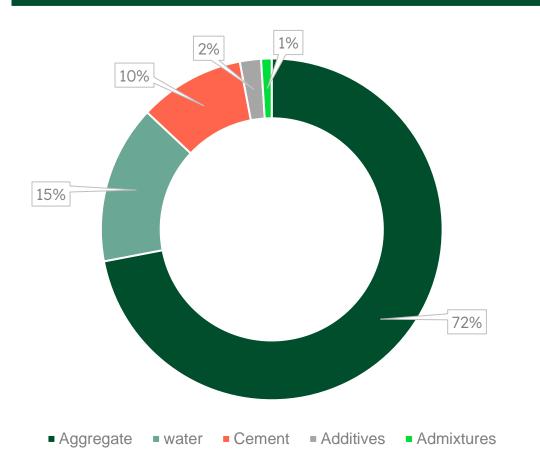
Gov. Policies (carbon taxing)

Sustainability Targets and Commitments

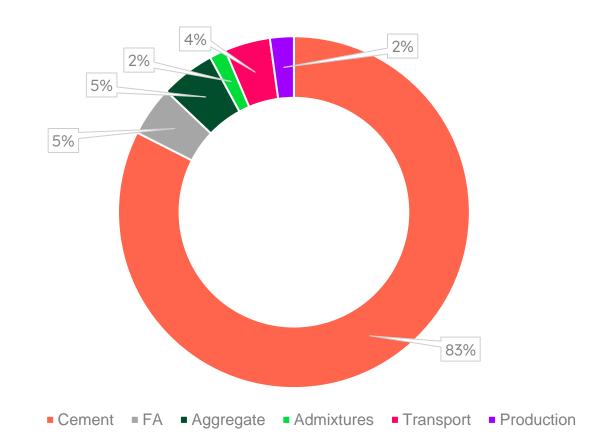
Change takes a long time

Cement impacts are ~85% of Concrete's

Concrete is just about synonymous with construction

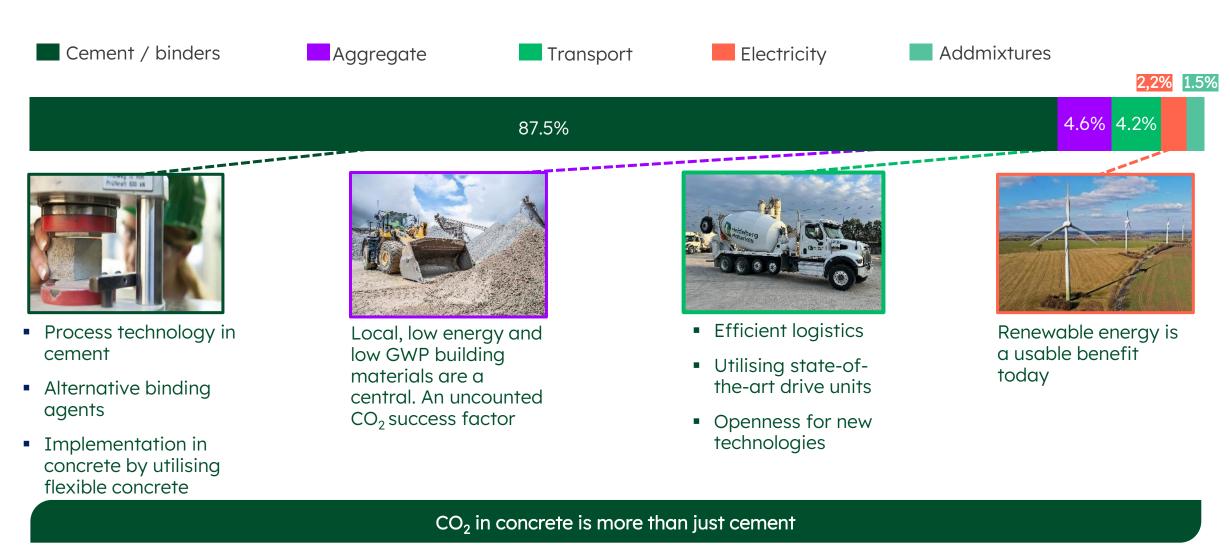

Concrete is second only to water in consumption

Together we can make a significant impact on emissions



CO₂ in concrete CO₂ emissions from concrete

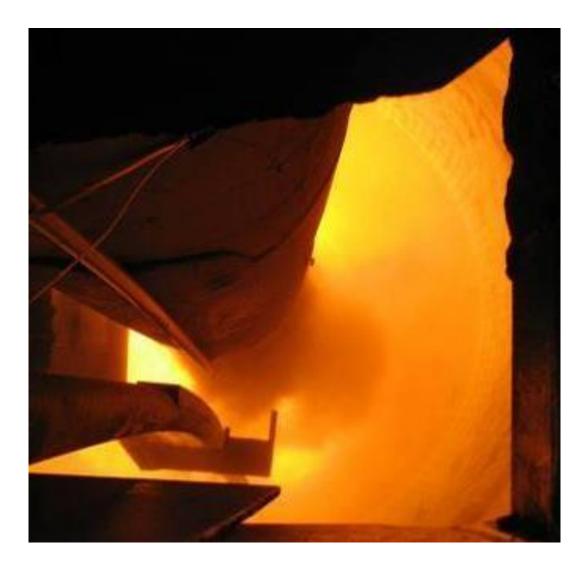
Concrete composition [Vol.-%]



GWP = 219 kg GWP/m³: Example for 4,350 - 5,400 psi conc.

CO_2 in concrete

Another concrete mix - CO_2 during concrete production



CO_2 in concrete

Cement's carbon footprint – where does in come from?

CO2 Emissions

- Energy emissions ~1/3 (working toward Alt. fuels)
 - Coal --- Natural Gas --- Alternatives/Electric
- Clinker process emissions ~ 2/3 (calcination)
 - Less clinker = less GHG emissions

PCA's Road Map to Carbon Neutrality

Ambitious comprehensive plan by the Cement Industry

- Five key links in concrete value chain
 - Clinker production
 - Cement production
 - Concrete the primary end product
 - Construction and service life of concrete structures
 - Natural carbonation process

ROADMAP TO CARBON NEUTRALITY

America's Cement Manufacturers

A more sustainable world is Shaped by Concrete

PCA's Road Map to Carbon Neutrality

The Roadmap

- Requires investment and innovative technologies
- Developing eco-friendly practices
- Calls for action in all LCA stages
 - Production: At The Cement Plant
 - Construction: Designing And Building
 - Everyday: Concrete Infrastructure In Use...
 - Use stage
 - End of life stage

PRODUCTION: AT THE CEMENT PLANT		
Replace raw materials with decarbonated materials	Using decarbonated materials eliminates CO2 emissions from process traditional raw materials, like limestone.	
Use alternative fuels	Replacing traditional fossil fuels with biomass and waste-derived fuels lowers greenhouse gas (GHG) emissions and keeps materials out of landfil	
Continue efficiency improvements	Increasing energy efficiency reduces the amount of CO ₂ emitted for each ton of product.	
Implement carbon capture, utilization, and storage (CCUS) technology	CCUS directly avoids a significant portion of cement manufacturing emissions.	
Promote new cement mixes	Creating new cements using existing and even alternative materials reduces emissions from mining for new materials, while optimizing the amount of clinker used ensures emissions correspond to necessary production.	
Increase use of portland-limestone cement (PLC)	As an existing lower-carbon blend, universal acceptance of PLC will reduce clinker consumption and decrease emissions.	
CONSTRU	JCTION: DESIGNING AND BUILDING	
Optimize concrete mixes	Considering the specific needs of the construction project and using only the materials necessary, avoiding excess emissions.	
Use renewable fuels	Switching to solar, wind and other renewable sources of energy directly reduces emissions from other energy sources.	
Increase the use of recycled materials	Diverting these materials from landfills.	
Avoid overdesign and leverage construction technologies	Designing for the specific needs of the construction project reduces unnecessary overproduction and emissions; incorporating just-in-time deliveries.	
Educate design and construction community	Improve design and specifications to be more performance oriented which will permit innovation in cement and concrete manufacturing. Encourage the use of advanced technologies to improve structural performance, energy efficiency, resiliency, and carbon sequestration.	
EVERYDAY: CONCRETE INFRASTRUCTURE IN USE		
Incentivize energy efficient buildings	Increasing buildings' energy efficiency can cut energy use and resulting emissions from heating and cooling.	
Reduce vehicle emissions by improving fuel efficiency	Because of its rigidity, concrete pavements enhance the fuel efficiency of vehicles driving over them, reducing vehicle emissions.	
Decreased maintenance	Due to their durability, concrete structures (buildings, pavements, bridges, dams, etc.) last longer and require less frequent maintenance.	
Recycling	Concrete in place can be 100% recycled, limiting the use of raw materials and production emissions.	
Carbonation	Every exposed concrete surface absorbs CO2 and over the course of its service life, a building can reabsorb 10% of cement and concrete production emissions.	

The Industry is Responding

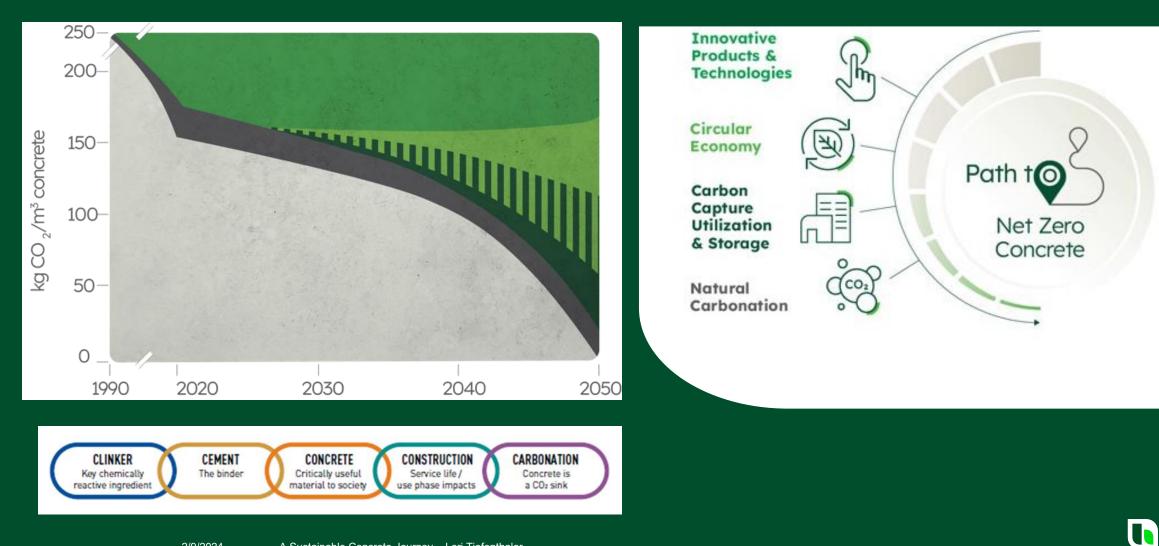
Companies are responding

- At the Cement Plant
 - Efficiency improvements, drives fuel/energy emission savings
 - Burn alternative fuels such as biomass and waste-derived fuels
 - Increase use of portland limestone cement (PLC)
 - New blended cements with lower clinker to lower carbon intensity
 - Use Carbon Capture, Utilization, and Storage (CCUS) technology

Mitchell K4 - One of the most technologically and sustainable cement plants ever built

2.4 MMT

Second Largest Plant in North America **Systems:** The new plant capacity is 3 times larger, adding many efficiencies with new equipment and latest technologies and using Natural Gas with options for alternative fuels when permitted


Products: The Kiln 4 project came online in mid 2023 to produce primarily EcoCemPLC and Masonry Cement (both lower carbon products).

Objective: Improve the carbon footprint of concrete; we are repurposing the old Speed, IN plant to a slag grinding facility in mid -2024

Awaiting 12 months of data to produce an EPD

Mitchell, Indiana

Our Road Map to Net Zero Concrete – A Multidimensional Approach

2/9/2024 A Sustainable Concrete Journey – Lori Tiefenthaler

OPC / Portland	~ 94% Clinker	<u><</u> 5% Limestone
PLC Type IL / GUL	~ 82% Clinker	<u><</u> 15% Limestone
Blended Cements Type IT (P20)(L10)	~ 67% Clinker ~ 20% SCMS + 10% Limestone	

Innovative Products

Low Carbon Cements for Concrete Mixes Clinker reduction

- Key strategy for reducing embodied CO₂ aka GWP
- Performance Specifications enable their use
- Significant reduction potential depending on available materials and type of application

ASTM C595 / AASHTO M 240

- Portland Limestone Cement allows up to 15% limestone
- Binary and Ternary Blended Cements...
- IT(P20)(L10) is ternary blend, 20% pozz. 10% limestone

Important Part of Today's Mixes - Supplementary Cementitious Materials (SCMs)

• Defined by ACI Concrete Terminology ACI CT-23

"Supplementary cementitious material - inorganic material such as fly ash, silica fume, metakaolin, or slag cement that reacts pozzolanically or hydraulically"

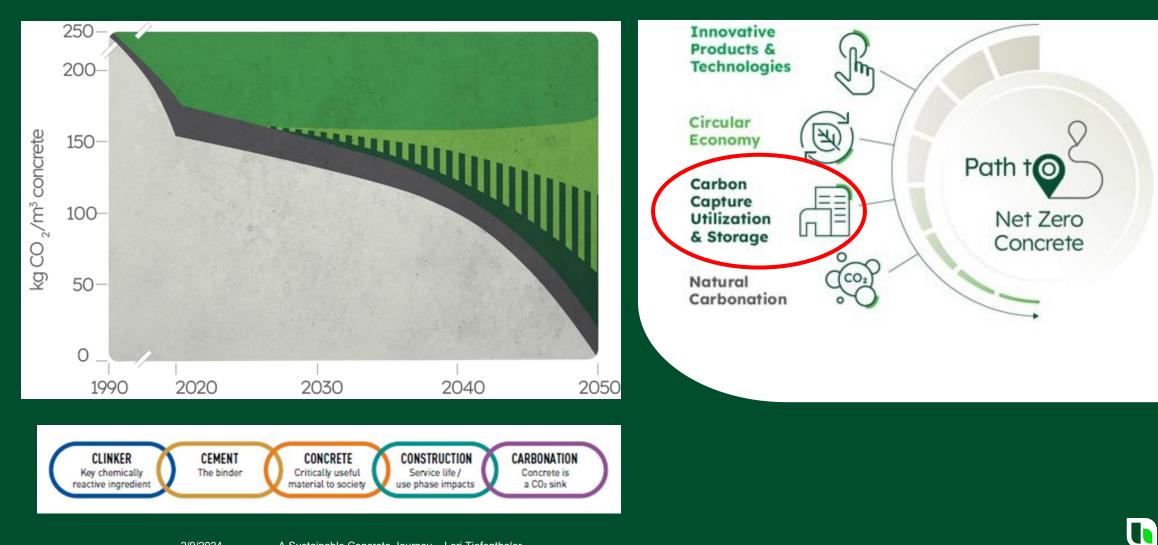
- Combined in concrete mixes in conjunction with and to replace some of the Portland Limestone or Portland Cement binder
- SCMs have lower Global Warming Potentials (GWP)
- SCMs can improve concrete durability:
 - Stronger, less permeable, less susceptible to chemical attack and ASR

Coal Ash aka Fly Ash in Concrete Mixes

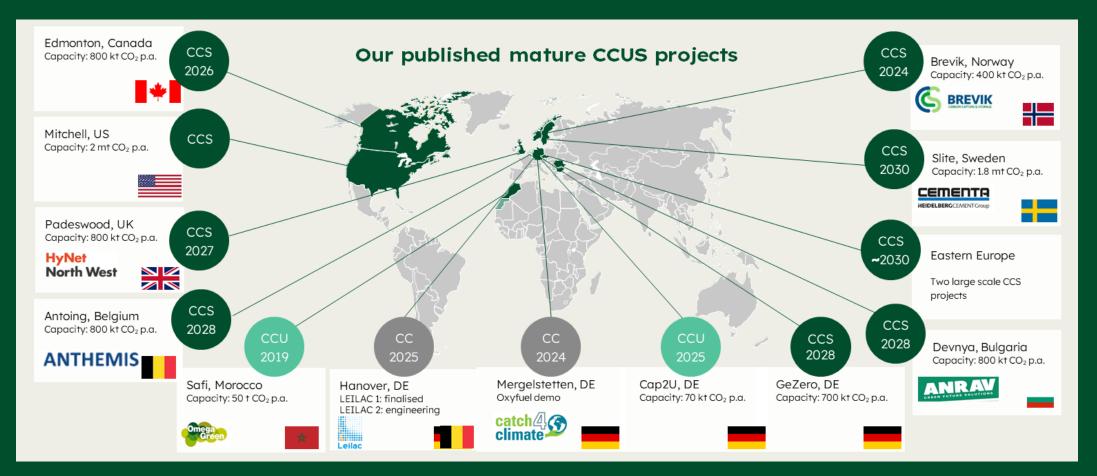
Waste Product from Coal Combustion, Typically by Electrical Power Plants

- Fly Ash often used to replace 15% 25% of PLC or OPC, \geq 50% for special applications
- Two primary source conditions
 - Fresh aka production "Fly Ash"
 - Ash harvested from ponds or landfills
- Fresh Fly Ash, is a siliceous flue gas residue
 - Has very low moisture contents used "as is"
- Harvested aka "reclaimed" fly ash must be...
 - Dewatered and thermally treated for use
 - This "beneficiation" process increases GWP (CO₂ eq.)

Slag Cement Use in Concrete Mixes


Byproduct of primary iron manufacturing in blast furnaces

- Must go through "granulation" by rapid quenching
- Slag granules have similar chemistry, Portland cement clinker
- Can be interground to make Portland slag cement ie IS40
- Once ground does have hydraulic attributes on its own
- In practice, coupled with PLC or Portland cement in mixes
- Slag cement often used to replace 30% 50% of PLC or OPC
- Some applications very high replacement rates of \geq 80%
- Can provide excellent resilience benefits
- Good synergies with PLCs



Our Road Map to Net Zero Concrete – A Multidimensional Approach

2/9/2024 A Sustainable Concrete Journey – Lori Tiefenthaler

Carbon Capture, Utilization and Storage

Edmonton's Net Zero Future

Scope: Amine-based CO₂ removal system & combined heat & Power plant

1 million

mt CO₂ p.a.

Status: Feasibility study complete and project preparation well on track (Commissioning: 2026)

Objective: The world's first full-scale carbon neutral cement plant

Rendering Edmonton, Alberta

Mitchell, IN – Carbon Capture Utilization and Storage (CCUS) - by 2030

2 million

mt CO_2 p.a.

Scope: Amine-based CO2 removal system, targeting 2mt CO₂ annually at 95% rate

Status: Feasibility study for capture and onsite storage onsite; three (3) DOE grant awards


Objective: The first fullscale carbon neutral cement plant in the United States

Mitchell, Indiana

Edmonton Carbon Capture and Storage Overview

Storage

- CO₂ to be stored in deep saline reservoirs
 - Permanent storage 1,500-3,000 meters below ground in porous rock filled with brine with multiple overlying layers of impermeable cap-rock
 - Far below potable water and oil and gas reservoirs
 - Current global storage capacity 40 million tons/yr.
- Examples of CO₂ Storage
 - Alberta Shell's Quest project has permanently stored over 6 million tons of CO2 since 2015
 - Saskatchewan Aquistore project permanently stored 500,000+ tons of CO₂ annually since 2015
 - Illinois Decatur project permanently stored over 1 million tons from 2011 to 2014

Where Specifiers, Owners, Construction Professionals, Designers, and Stakeholders Fit In

CLINKER Key chemically reactive ingredient CEMENT CEMENT The binder CONCRETE CONSTRUCTION Service life / material to society Use phase impacts CARBONATION Concrete is a C02 sink

Changes to drive decarbonization

- Specify rigid concrete pavements improve vehicle fuel efficiency
- Concrete performance specifications **Optimizes Mixes (PEM)**
 - Incentivize innovation
- In-place (non destruction testing) maturity (reduce over-design)
- Work with industry to use Type IL and Type IT
 - PLC is becoming the norm in many markets
 - In 2022 PLC use saved over 1.8 million tons CO₂ in emission avoidance
- Allow/specify the use of recycled materials in mixes, i.e. RCA
- Educate design and construction community
- Account for natural carbonation process where CO₂ is absorbed by concrete, especially in Use and End of Life stages of LCA

Thank You