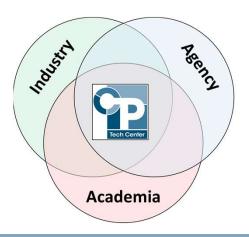
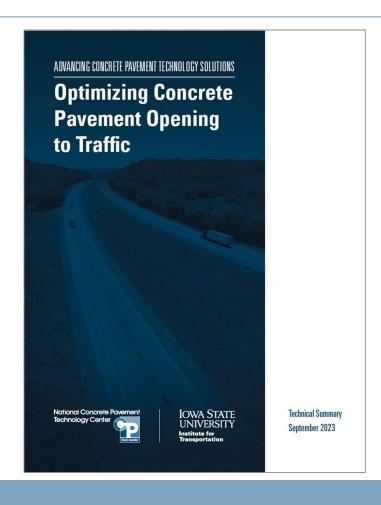
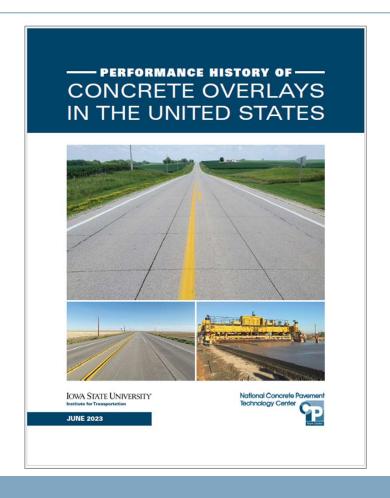
CPTech Center 2024

Peter Taylor


National Concrete Pavement Technology Center

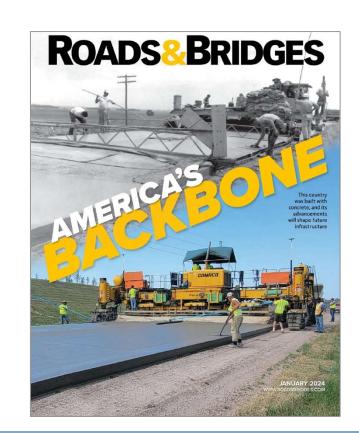
Tech Center


IOWA STATE UNIVERSITY Institute for Transportation


What Are We There For?

- To help you...
 - Make great concrete pavements
 - Solve problems
 - Try out new ideas

Publications



Publications

Tech Briefs

- Revisiting Concrete Scaling
- Climate Change, Resilience, and Concrete Pavements

Magazine Articles

Publications

- On the way...
 - Recommended Practice for Quality
 Assurance of Portland Cement Concrete
 - Overlay repairs
 - Achieving and measuring the foundations that meet design support requirements
 - Overview of LC3, Blended Cements and Alternative Supplementary Cementitious Materials

ADVANCING CONCRETE PAVEMENT TECHNOLOGY SOLUTIONS

Guide for Reducing the Cradleto-Gate Embodied Carbon Emissions of Paving Concrete

January 2024

Videos

AASHTO

- T 413 Maturity for pavements new method
- T 395 SAM precision and bias
- T 358 and T 402 Resistivities precision and bias
- T 403 VKelly full standard

Tech Support

• 180 contacts spread across agency, industry and academia

Admixture question	Overlay on faulted concrete
Albedo testing	PLC
ASR	Preservation
Buckling	Proportioning tool
Curing	Rain
Early opening	Recycling info
EPDs	Roundabout jointing
Fabric interlayer	Sawing specifications
Failed patches	Scaling
Fiber-reinforced concrete	Shrinkage
Geotextile	Slab cracking
Hail damage	Spalling
Heavy truck design	Specification
Heritiage repair	Surface sealers
Low Air	Trails

Tech Tuesday Webinars

Date	Topic	Attendees	Countries
11/14/2023	Low carbon Concrete	237	11
10/10/2023	Cold weather	350	5
9/12/2023	Smoothness	320	5
8/8/2023	Performance cements	176	9
7/18/2023	Stabilization	315	13
6/13/2023	LCCA	370	15
5/9/2023	Preservation	416	11
4/25/2023	FAA Specifications	385	13
3/14/2023	P3C	287	5

Tech Tuesday Webinars

- Future ideas
 - Low carbon AASHTO guide
 - Pavement foundations
 - Ultra-smooth concrete
 - Roundabouts
 - Jointing
 - Dowels Best practices
 - Construction while maintaining traffic
 - CPR for thin overlays
 - Authority of the Engineer
 - Engineering Ethics...

Lunch and Learn Program

Concrete Roundabout Design and Construction

Thursday, February 1 Cedar Rapids

Friday, February 2 Ankeny

Friday, February 16 lowa City

Wednesday, February 28 Council Bluffs

Thursday, February 29 Waterloo

Friday, March 1 Davenport

TTCC Workshops

Bridge Deck Curing

Concrete Preservation

Inspector's

Quality Control Workshop

PEM & IMCP

Concrete Preservation

Concrete Roundabouts

Concrete Overlays

Recycled Concrete Aggregates

Utah

Idaho

North Dakota, South Dakota, Alabama

Illinois Tollway, Texas

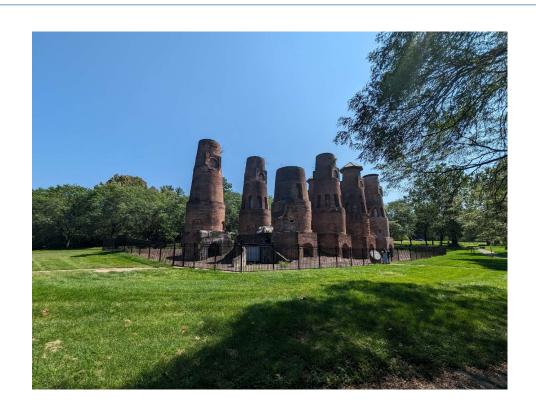
West Virginia

Pennsylvania

Minnesota

Wisconsin

Colorado


Cool Places!

Ferrebee Ferrebee

Cool Places!

FHWA Coop

Tasks completed

Task	Deliverable			
Fly Ash Tech Brief	Tech Brief PowerPoint Tech Brief			
Fly Ash PowerPoint				
Use of RCA in Concrete Mixtures Tech Brief				
QC Manual (QC control charts in appendix)	Manual			
PEM testing one pagers	One page summaries			
Precision & Bias testing for SAM	Summary report AASHTO P&B statement AASHTO P&B statement			
AASHTO P&B statement for SAM				
AASHTO P&B statement on resistivity				
Update Preservation Guide &PPT	Guide			
Update Overlay Guide	Guide			
History of Overlays	Tech Summary			
Precast PPT (for Concrete P&M TFG)	PPT			
Fly Ash PPT (for Concrete P&M TFG)	PPT			
Fly ash video	video			
Overlay video	video			
CPMTFG	meeting/notes			
CPMTFG	2 additional meetings/notes			

Communication dev CPM program	Branding - CPM			
Concrete Overlays: Value Proposition	Tech Summary			
Concrete Overlays: Proven Technology	Tech Summary			
Optimizing Opening	Tech Summary			
Optimizing Opening	PPT			
Tech Brief: Resources for Selection, Design, and Construction of Concrete Overlays	Tech Brief			
EDC-6 Six one-pagers	One page summaries			
EDC-6 Case study: Alabama, Delaware, Florida, Arkansas, Virginia, Illinois, Iowa, Missouri	Case Studies			
EDC-6 Case study: Kansas, Oregon	Case Studies			
PPT: A solution for extending the life of an existing pavement investment	PowerPoint			
Review of TOPS workshop & attend California	Review			
Pavement Maturity	AASHTO test method			
Non-contact Accoustic Array	report			

FHWA Coop

Tasks still due by Dec 24

Construction Byproducts Tech Brief	Tech Brief			
Use of Industrial Waste Byproducts Tech Brief	Tech Brief			
Foundations Design Tech Brief	Tech Brief			
Concrete Pavement Foundation Verification Demonstrations	3 demos. Project case history/ Tech Briefs			
Case Studies on Long Lasting Pavements built using PLCs	2 Case Studies			
Overview of LC3 & Other Blended Cements	Tech Summary & PPT			
Alternative SCMs	Tech Brief & PPT			
QC Tech Brief 1: QC Plans for Concrete Paving	Tech Brief			
QC Tech brief 2: QC for Concrete Paving with PEM	Tech Brief			
QC Tech brief 3: QC Tools for Concrete Paving	Tech Brief			
QC Tech brief 4:Agency Approaches to QC for Concrete Paving	Tech Brief			
QC Workshops & presentations				
P&B testing for resistivity	testing			
P&B report on resistivity testing	Summary report			
P&B testing BOX and Vkelly	testing			
P&B report on Box and Vkelly testing	Summary report			
AASHTO P&B statement on Box	AASHTO statement			
AASHTO P&B statement on VKelly	AASHTO statement			
PEM model spec language	Summary report			

PEM model spec language	Summary report			
Carbon Footprint Evolution	Report			
Guide for Reduced Embodied Carbon	AASHTO guide			
PEM Implementation	Update R101			
	Successes web page			
PEM Workshops/presentation				
Standarized LCA for Pavements	White paper			
CaOXY Evaluation	Tech Brief			
P3C	ETG meeting			
Concrete for Other than States	6 case studies			
	How to Guide for non-			
	state agencies			
Truck Corridors	White concept paper			
	Case study and PPT			
Resilience strategies: Challenges & Case study on changes	2 Tech Briefs			
Preservation Workshops/webinars				
Overlay Workshops/webinars				
Concrete Overlay Repairs	Tech Brief and PPT			
Technical Assistance				
Webinars				
Workshops on Overlays				
CPMTFG	1 more meeting			
Shrinkage	Summit & notes			
Similikage				

	1			
Field demos	2 field demos on PEM			
Project Streamlining/Acceleration	Tech Summary			
EDC-6 Case study: Colorado	Case Studies			
Iowa Case Study	Report			
Pavement Maturity	PPT for presentations			
Maintenance of Traffic	3 case studies Decision Tree Tech Brief/PPT			
Real Time Smoothness: 6 demo projects	Construction reports			
Real Time Smoothness: 2 more demos	Const reports State of practice and value prop			
Air Void Measurement Device SWAM	Report			

FHWA Coop

- Instant Air Meter
 - Test takes seconds
 - Can run on a pile of concrete
 - * Needs work

FAA Coop

Underway

- ASR
- PEM
- Rapid repair
- Quality
- Rubber removal
- Diamond grinding
- Thin airfield concrete pavements
- Paving continuity

FAA Coop

In preparation

- Resilience
- Acceptance criteria
- Load transfer and dowels

To come

- Heat resilience
- Shrinkage and design
- ASR field site

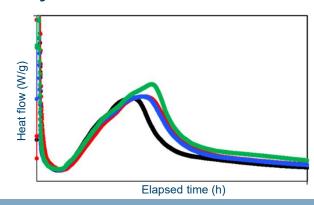
FAA Coop

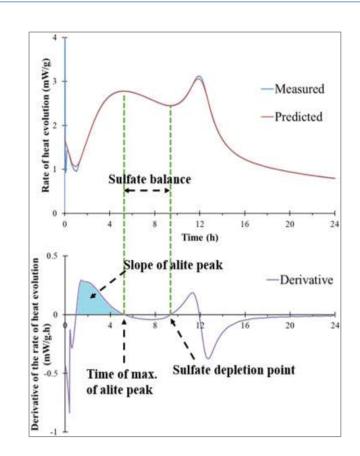
- Workshops
 - Mankato, MN
 - Indianapolis, IN
 - Denver, CO
 - Hershey, PA
- Tech Briefs
 - Reduced carbon
 - New materials

Performance Centered Concrete Construction (P3C)

What should be measured on site?

- Workability
- w/cm
- Air
- Segregation
- Consolidation
- Thickness
- Finish
- Smoothness
- Curing
- Saw Time
- Joint Activation
- Opening


- VKelly
 - Make the test more user friendly and portable
 - Understand the science behind the method
 - Guide mixture proportioning and field operations
 - Broaden the applicability to include structural and pumping mixtures


- Vibration
- Evaluate Effects of Vibration on Various Concrete Mixtures
- Effect of Vibrator variables
- Improved Vibrator Monitors
- Field Demonstration

- Super Absorbent Polymers for internal curing
 - How to specify SAP products
 - Determine the required quantity
 - Evaluate the feasibility of dry batching with additional water
 - Assess the impact of the optimized SAP on concrete performances, including strength and durability.

- CC·I·L Cement
 - Investigate low carbon cement
 - Characterize materials
 - Optimize blends
 - Test
 - Field evaluation

- Climate Challenge
 - Understand what is involved with requiring contractors to produce EPDs
 - How to use that information
 - Understand how the embodied-impacts analysis compares to a life-cycle analysis

- Joint Sawing
 - Literature review
 - Survey of agencies, contractors, and sawing equipment providers to establish best practices
 - Perform a field investigation of local issues
 - Produce a guide on best practices

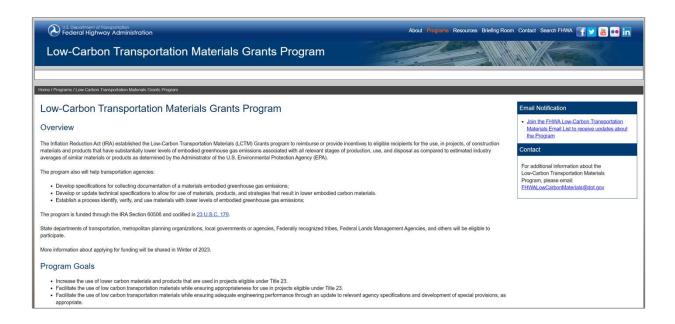
- Fibers in overlays
 - Re-visit existing test sections
 - Make a complete assessment of performance indicators
 - Understand the contribution of fibers to concrete overlay field performance
 - Improve concrete overlay design procedures

Research Ideas

- Evaluation protocol for new cements
- Buckling
- Pumping and air
- Noise in fabric overlays

CP Tech Focus Areas

- Sustainability
- Resilience


But we must not forget...

- Constructability
- Durability
- Overlays

Sustainability

- IRA Resources
- RC3 Support

Reduced Cabon Concrete Consortium (RC3)

ACPA

A Resource for Contractors, Owners and Decisionmakers on Low-Carbon Funding Opportunities and Benchmarking Requirements (EPD Creation and Application)

The Inflation Reduction Act (Public Law No: 117-169), signed into law on August 16, 2022, provides over \$5 billion in discretionary funding to be used for three new FHWA programs: the Neighborhood Access and Equity Grant Program, the Low-Carbon Transportation Materials Grants, and Environmental Review Implementation Funds.

In anticipation of Administration action announcing next steps in releasing funding from the Inflation Reduction Act Section 60506 Low-Carbon Transportation Materials Grants industry stakeholders. including the American Concrete Pavement Association, CP Tech Center, and other qualified engineering professionals, have formed RC3, a consortium dedicated to disseminating funding information, assisting with identification of qualifying projects, facilitating application submission, and contractor preparedness with critical next steps such as Environmental Product Declarations (EPDs).

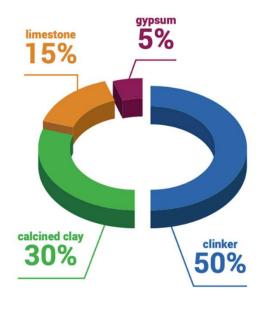
Go to the RC3 website to sign up for the distribution list or reach out as indicated below:

- · If you are a contractor and need information about EPDs, RC3 can assist in improving environmental impacts. We can also help train and provide the resources and access to necessary tools for their creation and application. For more information contact Eric Ferrebee at eferrebee@acpa.org.
- · If you are a project owner, governmental entity, tribal government, or other potentially qualifying grant recipient and need application assistance or technical support to achieve low-carbon concrete initiatives. RC3 can assist. For more information contact Tom Van Dam at tvandam@wie.com.

RC3 is supported 100% by non-profit investment devoted solely to educating and assisting on earbon reduction. There is no fee to join and receive information.

Reducing Carbon

- What can we do to reduce impact?
 - Use concrete efficiently
 - Use binder efficiently
 - Use clinker efficiently
 - Reduce construction impacts
 - Reduce user fuel consumption


Portland Limestone Cements (ASTM C 595)

- Up to 15% ground limestone
- Similar performance

But Wait - There's More

- Harvested fly ash
- LC3
- 50% clinker
- Other powders

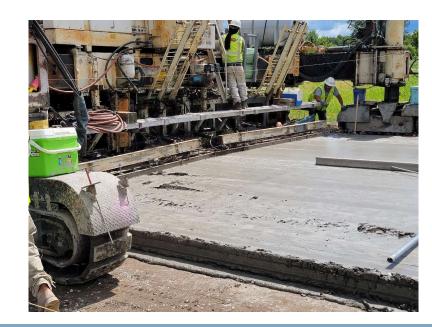
Impacts

- Sensitivity to materials variability may be changed
 - "Low cement mixtures are delicate!"
- Design assumptions may need to change
 - Shrinkage
 - Modulus of elasticity

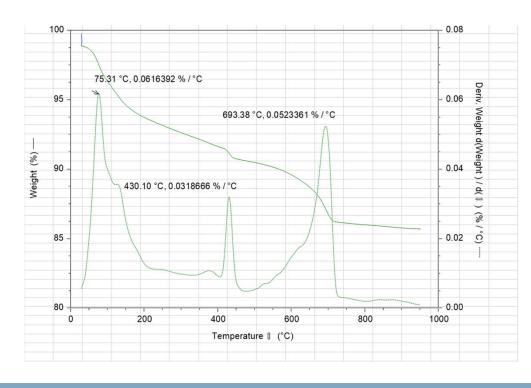
Impacts

Properties will change

- Setting time
- Bleed
- Strength development


Construction practices may need to change

- Finishing
- Curing
- Sawing


Impacts

- Costs of trials
- Costs of slower construction
- Costs of changing risks
- Are the current specs appropriate?

I have to know what's in it

How good is your chemistry?

Or...I have to know what it does

- But what?
 - Are we specifying the right things for cements?
 - Set time
 - Strength gain
 - HOH
 - Sulfate expansion
 - Autoclave
 - Air
 - Is anything missing?
 - Permeability
 - Shrinkage
 - Or do we worry about the concrete?

	TABLE 1	Standard Phy	rsical Require	ements			
Cement Type	Applicable Test Method	GU	HE	MS	HS	МН	LH
Fineness	C204, and C430 or C1891	A	A	A	A	A	A
Autoclave length change, max, % Time of setting, Vicat test [®]	C151/C151M C191	0.80	0.80	0.80	0.80	0.80	0.80
Initial, not less than, minutes		45	45	45	45	45	45
Initial, not more than, minutes		420	420	420	420	420	420
Air content of mortar volume, max, % ^C Compressive strength minimum, MPa [psi] ^D	C185 C109/C109M	12	12	12	12	12	12
1 day		400	12.0 [1740]	644		***	***
3 days		13.0 [1890]	24.0 [3480]	11.0 [1600]	11.0 [1600]	5.0 [725]	200
7 days		20.0 [2900]		18.0 [2610]	18.0 [2610]	11.0 [1600]	11.0 [160
28 days		28.0 [4060]	***	***	25.0 [3620]		21.0 [305
Heat of hydration, max, kJ/kg [cal/g]	C1702						
3 days		***	***	666		335 [80]	200 [50]
7 days		***		***	***	***	225 [55]
Mortar bar expansion	C1038/C1038M						
14 days, % max		0.020	0.020	0.020	0.020	0.020	0.020
Sulfate expansion (sulfate resistance) ^E	C1012/C1012M						
6 months, max, %		***	***	0.10	0.05	***	***
1 year, max, %		441		***	0.10	***	***
	0	ptional Physical	Regulrements				
Option A—Air entraining ^{C,F}	C185						
Air content of mortar, vol %							
max		22	22	22	22	22	22
min		16	16	16	16	16	16
Option R—Low reactivity with alkali-silica- reactive aggregates ^Q Expansion at	C227						
14 days, max, %		0.020	0.020	0.020	0.020	0.020	0.020
56 days, max, %		0.060	0.060	0.060	0.060	0.060	0.020
Early stiffening, final penetration, min,%	C451	50	50	50	50	50	50
Compressive strength, D 28 days, min, MPa	C109/C109M	30	50	28.0	50	22.0	50

Where next?

- Learning and thinking required
- Target the properties you need
- Do those trial batches
- Stay away from the cliff edge
- Enjoy the adventure!
- Help is available...

