Machine vs Concrete Building long lasting concrete pavements (PEM2)

Peter Taylor, PhD, PE (IL), FACI
PEM Philosophy

• What do we want?
• How do we know its good?
• How do we deliver it?
PEM 1 – The mixture

• Transport
• Cold weather
• Strength
• Aggregates
• Shrinkage

• Workability
PEM 2 – The mixture after it is dumped

- Consolidation
- Smoothness
- Thickness
- Finishing
- Curing
- Sawing
But how do we get there?

- What levers can we pull?
- What tests inform our decisions?
PEM properties
Uniform Workable
Segregation
Smooth Finished
In the Lab

- Aggregate stability – AASHTO / ASTM protocols
- Shrinkage – paste content

- Transport properties (permeability) - resistivity
- Cold weather resistance – air void system
- Strength – compression / flexural
In the Lab

• Workability
 • Segregation
 • Response to vibration
 • Edge slump
 • Finishability

• Other tests?
In the Lab

Proportioning to achieve performance goals

<table>
<thead>
<tr>
<th>Aggregate System</th>
<th>Workability</th>
<th>Transport</th>
<th>Strength</th>
<th>Cold weather</th>
<th>Shrinkage</th>
<th>Aggregate stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type, gradation</td>
<td>✓✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓✓</td>
</tr>
<tr>
<td>Paste quality</td>
<td>✓</td>
<td>✓✓</td>
<td>✓✓</td>
<td>✓✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Air, w/cm, SCM</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Paste quantity</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓✓</td>
<td>-</td>
</tr>
<tr>
<td>Vp/Vv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
At the Batch Plant

• Workability
 - Power meter
 - Call from the paving supervisor
 - Data from the paver?
 - Augur power demand?
 - Torque to move paver
 - Drag on burlap

• Uniformity
 • Stockpile control
 • Water control
 • Loading sequence
 • Mixing time
 - No standard test
 - Moisture probes
 - -
In front of the paver

- Segregation
 - Aggregate gradation
 - Uniform delivery
 - Placing method

No standard test
Behind the Paver

• Finish and Smoothness
 • Vibration
 • Pan setup
 • Grout box
 • Paver speed
 • Finishing

• Real time smoothness
 • Internal sensors
Tining Bridge

- Texture
- Tine setup
- Bridge speed

- Curing
 - Curing Compound type
 - Spray rate

Sand Patch
Noise

Zollinger method?
Sawing

- Crack free / Saw type
- Blade
- Depth
- Timing

UPV

![Graph showing the relationship between UPV Initial Set and Sawing time, with the equation y = 1.2376x + 272.64 and R² = 0.8525]
Where Next?

- What have we missed above?
- Small bites – started with PEM
- Next bites
 - Vibration
 - Batch (water) control
Steps to Long Life

Target performance
- Workability
- Durability
- Strength

Design Levers
- Gradation
- Paste Volume
- Cementitious
- Admixtures

Batching
- Uniformity – Water
 - Cementitious system
 - Aggregates
- Mixing
 - Time
 - Energy

Transportation
- Mixing
- Workability
 - Time and weather
 - Added water / admixtures
- Uniformity

Placement
- Handling / Vibration
 - Bleeding
 - Segregation
 - Air void system
 - Water movement

Finishing
- Surface finish
- Curing
- Sawing

Measure!
Vibration

Purpose
• To remove unwanted air
• Assist with levelling

The Theory
• Reduce yield stress and viscosity
 • Allow bubbles to float out
 • Allow mixture to move

The means
• Vibration
What Is Happening under Vibration?

- Shaft oscillates in a circle sending out P and S waves
- Acceleration drops viscosity and allows air to float up and out
- Water moves horizontally
- Solids wobble and maybe rotate
What is a good vibration?

Ensures
• No segregation
• No entrapped air
• Retain entrained air
• No water movement

But how?
What is a good vibration?

• Missing is fundamental understanding of the “how to” details
 • Energy
 • Frequency
 • Amplitude
 • Duration
 • Spacing
• For a given
 • Workability
 • Air void system
 • Bleed / segregation
 • …
Rheology 101

Yield Stress, Pa

Force needed to start flow (Edge slump)

Plastic Viscosity, Pa.s

Resistance to change in rate (Consolidation)
Rheology 101

Yield Stress, Pa

- Slipform Concrete
- Regular concrete
- Water
- SCC
- Honey

Plastic Viscosity, Pa.s
Rheology 101

Yield Stress, Pa

Silica fume

Air

Water

Superplasticizers

Plastic Viscosity, Pa.s
Rheology 101

Yield Stress, Pa

Plastic Viscosity, Pa.s
Preliminary Lab Work

- Vibration energy (RMS velocity, in/s) at a specific time period across the a range of frequencies – converted to acceleration
- Vibrator reported voltage required to maintain fixed frequency
Water is shown to move away from vibrator tip

(a) Mixture 1 - air 3.7%
(b) Mixture 2 - air 7.2%
Air is shown to move up from vibrator tip

(a) Mixture 1 - air 3.7%

(b) Mixture 2 - air 7.2%