

Iowa DOT Climate
Challenge Project

ICPA 60th Annual Workshop

Des Moines, Iowa | Feb 8, 2024

National Concrete Pavement Technology Center

Leif Wathne, P.E.

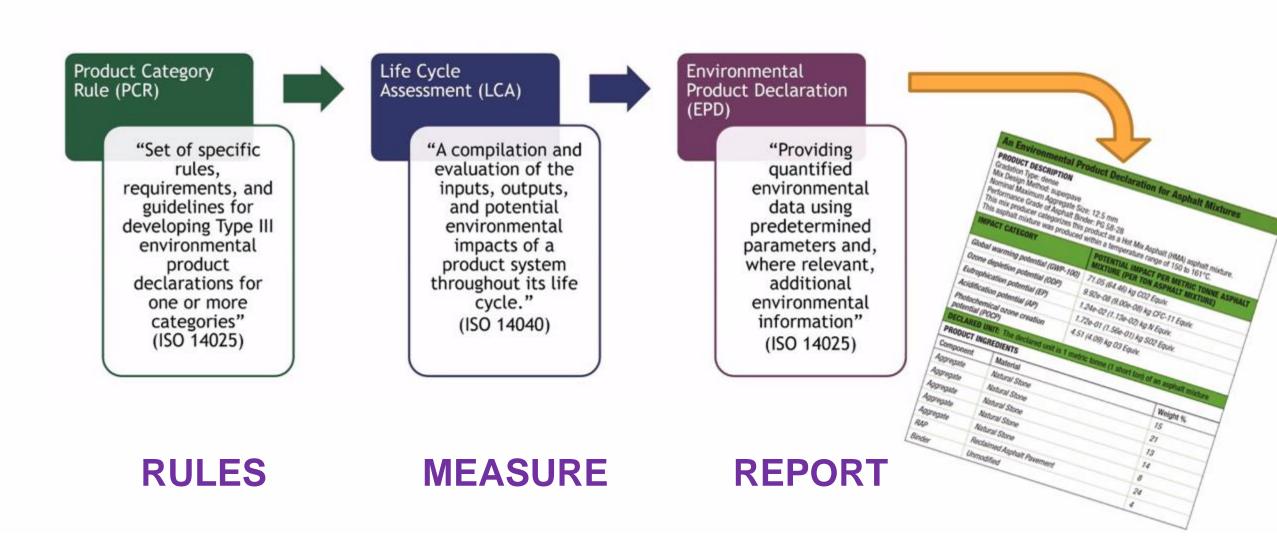
Talking Points

- Climate Challenge?
- Relevant to Iowa how?
- lowa's project details
- Progress to date
- Next steps

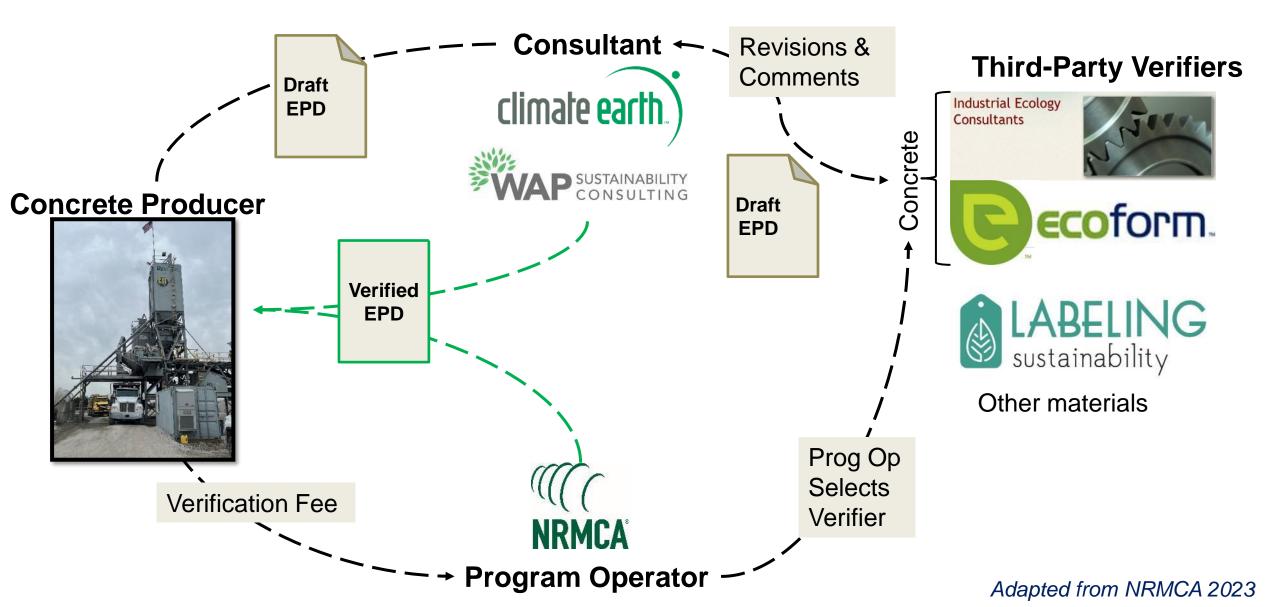
Climate Challenge?

 FHWA Grant Program aimed at quantifying the emissions of sustainable pavements using EPDs and LCAs

Summary


The Federal Highway Administration (FHWA) Climate Challenge provides resources to help state departments of transportation (SDOTs) or other public sector stakeholders explore the use of Life Cycle Assessments (LCAs) and Environmental Product Declarations (EPDs) as a standard practice to inform pavement material and design selection for enhancing sustainable pavement practices and quantify the emissions and impacts of those practices.

The Climate Challenge is administered by FHWA's Sustainable Pavements Program (SPP).


EPDs?

Environmental Product Declarations (EPDs) quantify relevant environmental information about a specific material/product

EPD Verification Process

What do EPDs tell us?

ENVIRONMENTAL IMPACTS

Declared Product:

Mix 45FN31C2C • Jeffco Plant

Description: CDOT CLASS B/D/P LOW SLUMP

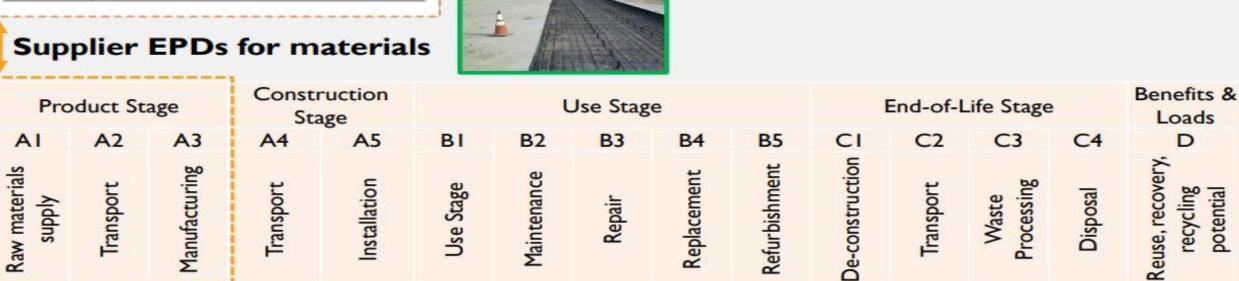
Compressive strength: 4500 PSI at 28 days

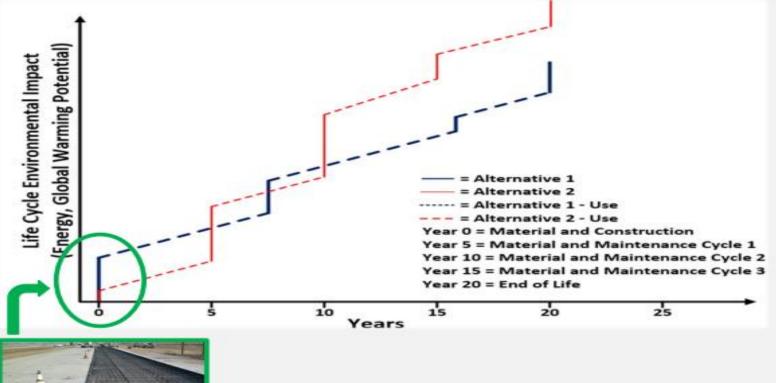
Declared Unit: 1 m³ of concrete

Global Warming Potential (kg CO ₂ -eq)	345
Ozone Depletion Potential (kg CFC-11-eq)	8.20E-6
Acidification Potential (kg SO ₂ -eq)	1.01
Eutrophication Potential (kg N-eq)	0.39
Photochemical Ozone Creation Potential (kg O ₃ -eq)	22.4
Abiotic Depletion, non-fossil (kg Sb-eq)	7.02E-5
Abiotic Depletion, fossil (MJ)	710
Total Waste Disposed (kg)	102
Consumption of Freshwater (m ³)	3.24

Product Components: natural aggregate (ASTM C33), Portland cement (ASTM C150), batch water (ASTM C1602), fly ash (ASTM C618), admixture (ASTM C494), admixture (ASTM C260)

... OF MANUFACTURE!

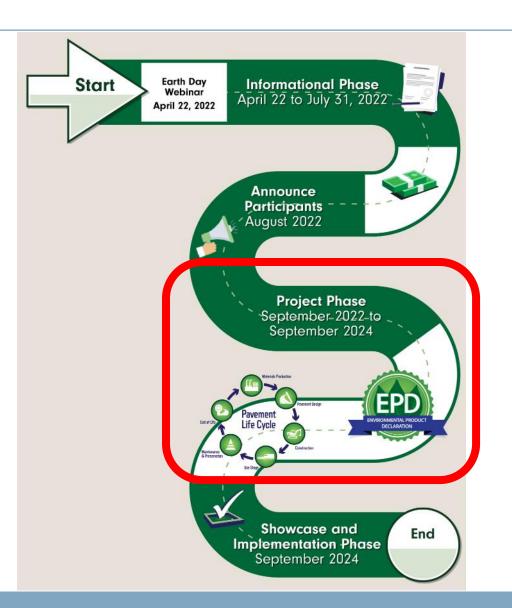

WHERE DO EPDS FIT IN?

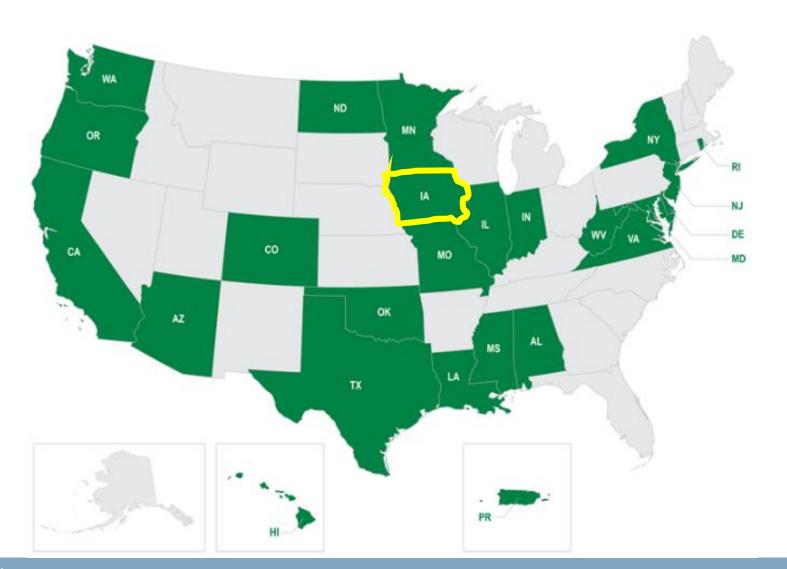

ABC Ready-Mix Environmental Impacts

Serving Size: 1 cubic yard of concrete mix no. 123

Global Warming Potential [kg CO, eq]	3.06x10 ³
Ozone Depletion Potential [CFC-11 eq]	4.24x10 ⁻⁶
Acidification Potential [kg SO ₂ eq]	21.7
Eutrophication Potential [kg N eq]	9.25x10 ⁻²
Photochemical Oxidant Creation Potential [kg O ₃ eq]	30.7

TOTAL ENERGY DEMAND [MJ]:	1166
Non-renewable [MJ]	586
Renewable [MJ]	580




FHWA's Climate Challenge Process

What Is the Process?

- 1. Informational Phase
- 2. Project Phase
- Showcase and Implementation Phase

Who applied...?

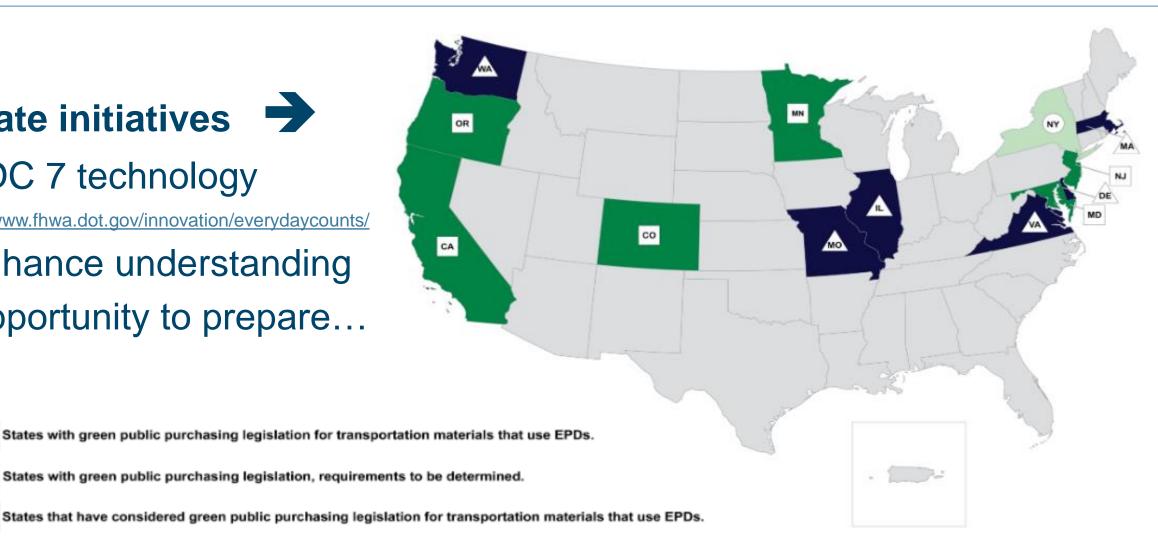
- FHWA's Climate
 Challenge identified
 more than 35 projects
 from 27 agencies,
 providing \$7.1 million to
 25 state departments of
 transportation.
- IADOT won a \$312K grant, led by CP Tech Center.

Relevance to Iowa?

Federal legislative efforts related to EPDs...

- \$250 Million for Environmental Product Declarations (EPD) Assistance
- \$100 Million for Low-Embodied Carbon Labeling for Construction Materials
- \$2.15 Billion for Use of Low-Carbon Buildings
- \$2 Billion for Low-Carbon Transportation Grants

Relevance to Iowa?


State initiatives

EDC 7 technology

https://www.fhwa.dot.gov/innovation/everydaycounts/

- Enhance understanding
- Opportunity to prepare...

Talking Points

- Climate Challenge?
- Relevant to lowa how?
- lowa's project details
- Progress to date
- Next steps

Iowa DOT

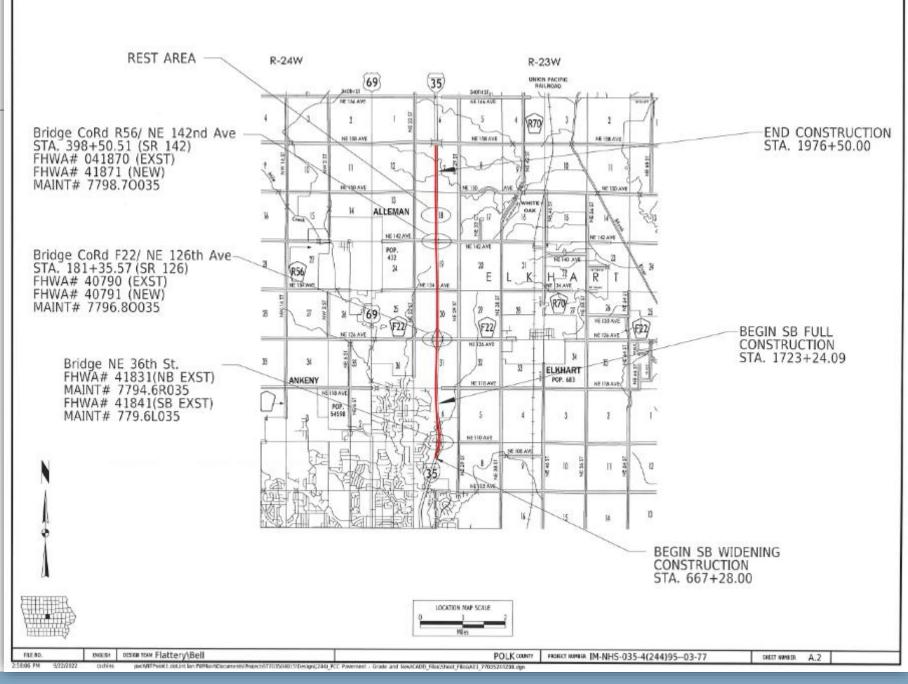
Contact Information: *Todd Hanson*

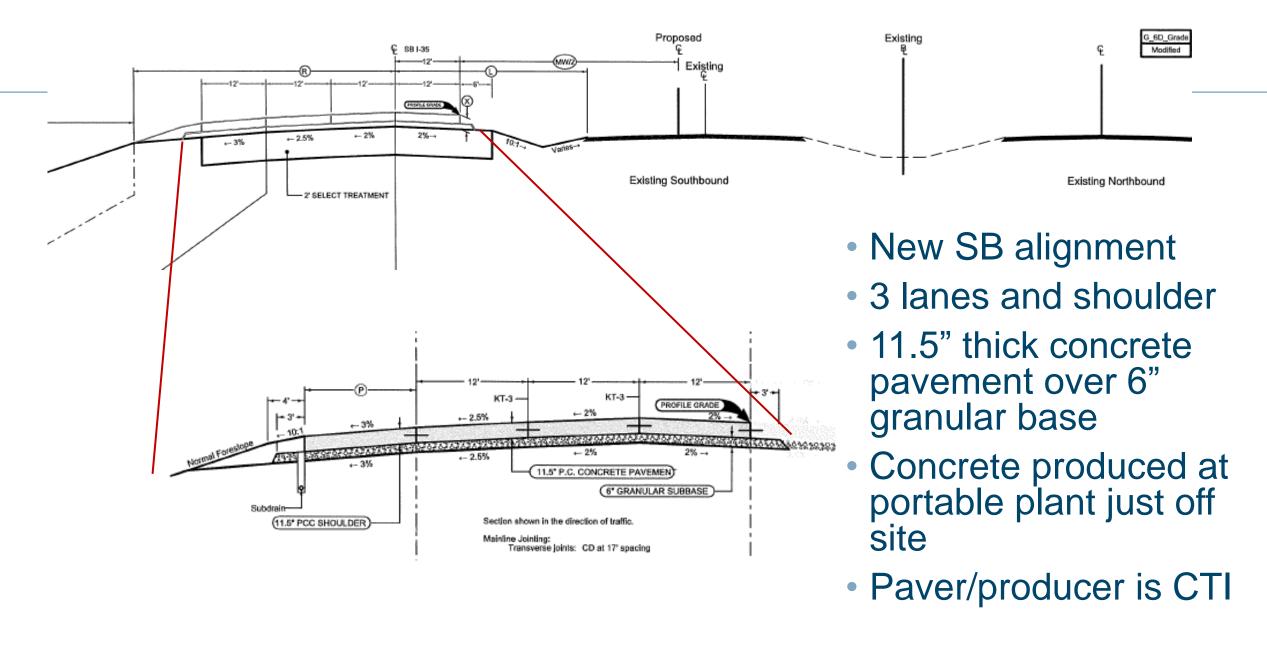
⊠: todd.hanson@ iowadot.us

Use of EPDs and LCA to quantify emissions and associated impacts of material and design decisions to enhance sustainable pavement practices in Iowa

Project Goals:

- (1) Understand what is involved in requiring contractors to use EPDs and informing sustainable decision-making.
- (2) Establish strategies to collect EPDs, implement LCA, and reduce impacts of pavements through changes in materials, design, and maintenance.
- (3) Provide training/workshop to lowa contractors and lowa DOT Staff.
- (4) Develop a state-of-the-art estimates of embodied emissions, use phase emissions, end-of-service emissions, and use phase excess fuel use and costs.

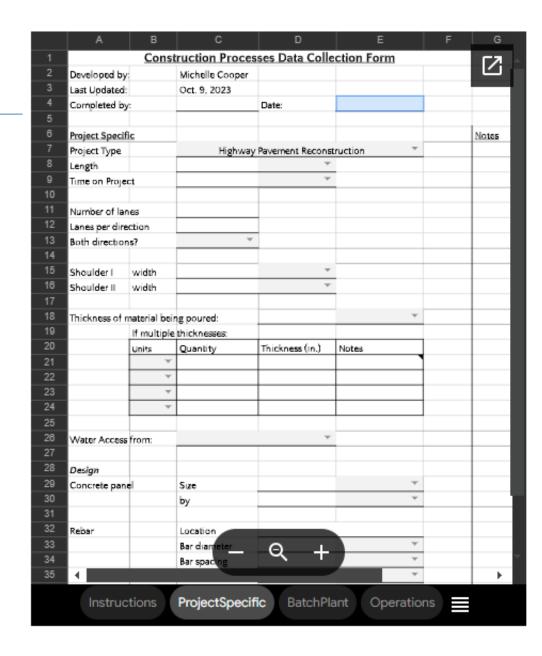

Project Tasks:


- Establish what type of adjustments will be necessary to adequately capture portable plants
- Enable lowa DOT and lowa paving industry to better understand the level of effort required to generate EPDs
- Identify areas where improvements in data collection, education and training are needed to facilitate possible routine EPD generation in the future.
- Inform a benchmarking analysis of current lowa DOT concrete paving operations.
- Enhance Iowa DOT understanding of the complete life cycle impacts (including usephase) associated with pavement assets and inform improved decision-making in the pavement arena to lower the GHG emissions associated with Iowa's pavement assets.

Project Details

IM-NHS-035-4(244)95--03-77

- I-35 southbound
 - Between Huxley and Ankeny
- New alignment
- ~4.8 miles
- 2023/24 construction seasons



Progress to Date

- A kickoff meeting on October 26 with the CP Tech Center research team, IA DOT and CTI personnel.
- Identified tentative dates for data collection during mainline paving. Preliminary data collection was initiated via spreadsheets.
- Research Team collected data on-site on November 14 and 15, documenting operations at the plant and on grade.
- Data analysis has been initiated and is ongoing by both EPD subcontractor (WAP Sustainability) and LCA subcontractor (MIT Concrete Sustainability Hub).
- A project TAC has also been identified for this effort.

Todd Hanson, Chris Brakke, Elija Gansen, Greg Mulder, Lisa McDaniel

DATA COLLECTION

The crucial data for determining construction operations emissions includes:

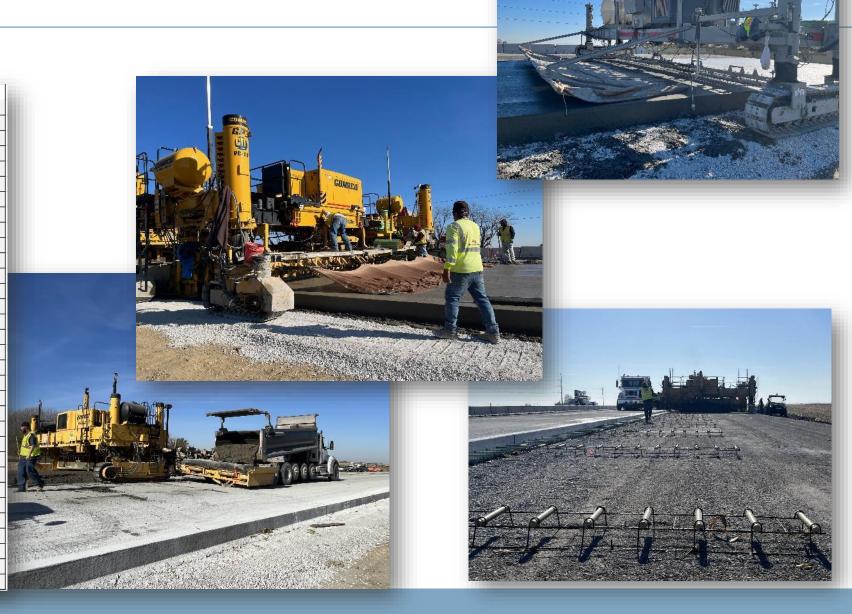
- fuel consumption rates,
- production rates, and
- materials quantities.

Data for construction operations emissions can be feasibly estimated without interrupting construction operations by reports from equipment operators, job site managers, and batch plant managers. In addition, certain production rates and materials quantities can be measured on-site.

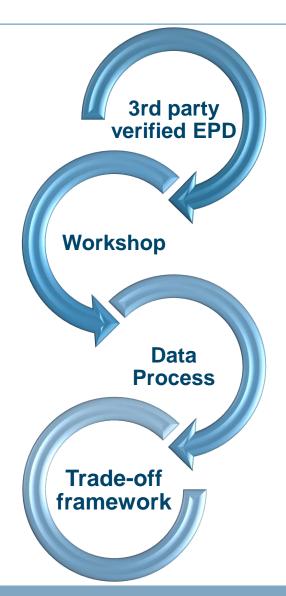
Project Data

Michelle Coop Oct. 9, 2023	er	
Oct. 9, 2023		
Beau Sprouse	Date:	10/31/2023
Highway I	Pavement Rec	onstruction
	mi	
4	months	
3		
3		
No		
12		
6	ft	
.11	11 5	
al being poure le thicknesses:	11.5	inches
Quantity	Thickness (in.	Notes
22464		Mainline Rural
132990		Interstate Mainline
132990	11.3	interstate Mairinne
city v	vater	
Size	12	ft
by	20	ft
Location	Cent	terline
Bar diameter	8-May	
Bar spacing	15	inches
Grid area		
Grid spacing		
(Grid area	Grid area

Batch Plant Data


			ses Data Co			
	ped by:	Michelle Coo	per			
Last Up	eted by:	Oct. 9, 2023	Data	10/31/2023		
Compi	eted by:	Beau Sprouse	Date:	10/31/2023		
Batch	Plant					
Concre	te Trucks					
Numbe	er of concre	ete trucks:	typical	15		
			busy day	22		
	Concrete	Mixture Desi	an	^		
Amour	Comont	Туре	1L			
Truck c	Cernent	Content		lbs/yd3		
			444		00	
		Source		or Distance	80	mile
Concre	SCM	Туре	Flyash			
		Content	20%	lbs/yd3		
quipn		Source		or Distance	75	mile
quipn oader	Fine Aggr	egate Type	Sand			
Genera		Content	1360	lbs/yd3		
Jenera		Source		or Distance	25	mile
	Intermedi	ate Type	Limestone Chip	ıs		
	l	Content		lbs/yd3		
		Source		or Distance	25	mile
Batch	Coarse Ac	greg Type	1 1/2" Limestor			
Concre	Coarse Ag	Content	,	lbs/yd3		
			1475		25	- 1
		Source		or Distance		mile
	Water	Content	20		gallons	
Numbe		Source	City	or Distance	0.05	mile
	Admixture	e I Type	WR			
Range		Content	15	other	ounces	
		Source		or Distance	50	mile
Time to	Admixture	e II Type	Air			
iiie to		Content	12	other	ounces	
Batch		Source		or Distance	50	mile
quipn		200.00		or Distance		
	Dowel Bar	r Diameter	1 ⊑	inches		
Silo	Dowel bal			inches		
loppe		Length				
Convey		Spacing		inches	C-C	
oader			OR		per pane	
Skid St		Source		or Distance	125	mile
Genera						
Office ¹	Ties	Diameter	0.63	inches		
				1 1		
QC Tra Other		Length	30	inches		

Paving Operations Data


Construction	Processes	Data	Collection Fo	orm
•				

Developed by:	Michelle Coop	er		
Last Updated:	Oct. 10, 2023			
Completed by:	Beau Sprou Da	ate:	10/31/2023	

Operations	Production Rates				
Equipment	Mainline paving (typical	1000	linear ft	per	day(s)
Paver	minimum	500	linear ft	per	day(s)
Texturing mad	maximum	3500	linear ft	per	day(s)
Belt placer	Ramp paving (typical)	1000	linear ft	per	day(s)
Skid steer	minimum	400	linear ft	per	day(s)
Saw cutter	maximum	2000	linear ft	per	day(s)
Roller	Shoulder paving (typica	500	linear ft	per	day(s)
Fine grader	minimum	250	linear ft	per	day(s)
Dump truck	maximum	1000	linear ft	per	day(s)
Pickup truck	Grinding (typical)			per	
Water truck	minimum			per	
Tracer track	maximum			per	
	Grading / Trimming (ty	2000	linear ft	per	day(s)
	minimum	1000	linear ft	per	day(s)
	maximum	5000	linear ft	per	day(s)
	Roller Compacting (typical)			per	
	minimum			per	
	maximum			per	
	Curing machine (typical	1000	linear ft	per	day(s)
	minimum	400	linear ft	per	day(s)
	maximum	3500	linear ft	per	day(s)
	Texturing machine (typi	1000	linear ft	per	day(s)
	minimum	400	linear ft	per	day(s)
	maximum	3500	linear ft	per	day(s)
	Saw cutting (typical)	2200	linear ft	per	day(s)
	minimum	880	linear ft	per	day(s)
	maximum	7700	linear ft	per	day(s)
14/-4	Hand Compacting (typical)			per	
Water Consu	minimum			per	
	maximum			per	
	Hand-spray Curing (typical)			per	
	minimum			per	

Next Steps...

- Development of 3rd party verified EPD for mobile plant ('theta' license for up to 3 plants)
- A workshop, in collaboration with FHWA, to educate contractors and agency participants
- Data collection and organization process for concrete paving projects in Iowa, and associated benchmark/life cycle information model for concrete paving
- Trade-off framework for informing decisionmaking with both embodied and operational carbon considerations.

Outcomes...

- Better understand what is involved in developing EPDs
- State-of-the-art estimates of embodied and use phase emissions and costs.
- Establish strategies to reduce impacts of pavements

13th INTERNATIONAL CONFERENCE ON CONCRETE PAVEMENTS | 55

- 100 Technical Paper Presentations
- 10 four-hour workshops and Student Competitions
- MnROAD and City Street Tours
- Social Events, Food, and Fun!
- National Concrete Consortium (NCC)
- www.13thiccp.concretepavements.org

Minneapolis Aug 25-29, 2024

