WHAT TO LOOK FOR IN URBAN PAVING?

Iowa Concrete Paving Association
56th Annual Workshop
February 6, 2020

Jerod Gross, P.E.
Urban PCC Paving

• Staging
• Utilities
• Sidewalk ramps
• Delivery & placement
• Jointing
Staging

Challenges

• Lack of space
• Property owner access

How to Address?

• Engineer: Establish staging criteria

• Contractor: Figure out how to meet criteria

Engineer may discuss staging with contractor during design
Staging
Staging
Staging

Options for Access
Place rock
Temporary road

Emergency services access
Utilities

Challenges
- Timing
- Proper depths for subgrade prep

How to Address?
- Survey
- Proper identification during design
- Involve private utility companies early on
Utilities

Boxouts for Utility Access

Standard Detail PV-103
Utilities

Boxouts for Utility Access

Standard Detail PV-103
Utilities
Utilities

• Intake boxout SW-514
Sidewalk Ramps

Challenges

• Gutter needs to be flat but needs to drain

• Crosswalk cross slope

• Excessive slopes
Sidewalk Ramps

How to Address?

- Design Manual 12A-2
- Ramp beyond the turning space
Sidewalk Ramps

How to Address?

• Design Manual 12A-2

• Optional layouts
 ➢ Parallel ramp
 ➢ Perpendicular ramp
Sidewalk Ramps
Sidewalk Ramps

Accessibility Exceptions Certification (Form 517118)

➢ Structurally Impractical
➢ Technically Infeasible
Concrete Delivery

How long to deliver to the site?

• Ready-Mix Trucks
 Max. Delivery Time 90 minutes

Options

Retarding admixtures
Water reducing admixtures
C-SUD = Improved Durability

- Low w/cm ratio
 - Target = 0.40
 - Max = 0.42
- Consider adding intermediate aggregate for greater workability*
- Should add SCMs for enhanced freeze-thaw durability

*3 aggregate mixes should be proportioned to meet Zone 2 (IM 532, workability factor)
Urban Concrete Mix

Above mixture is based on Type I or Type II cements (Sp. G = 3.14). Mixes using blended cements (Type IP or IS) must be adjusted for cement gravities listed in IM 401. **These mixes require optimized aggregate proportioning in accordance with the specifications.**

Proportion Table 4
SUDAS Concrete Mixes
Using Article 4110 and 4115 Aggregates
Basic Absolute Volumes of Materials Per Unit Volume of Concrete

<table>
<thead>
<tr>
<th>Mix No.</th>
<th>Cement</th>
<th>Water</th>
<th>Air</th>
<th>Fine</th>
<th>Coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-SUD</td>
<td>0.106</td>
<td>0.133</td>
<td>0.060</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using Class V Aggregates (4117) Combined with Limestone
Basic Absolute Volumes of Materials Per Unit Volume of Concrete

<table>
<thead>
<tr>
<th>Mix No.</th>
<th>Cement</th>
<th>Water</th>
<th>Air</th>
<th>Class V.</th>
<th>Coarse Limestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV-SUD</td>
<td>0.114</td>
<td>0.135</td>
<td>0.060</td>
<td>0.379</td>
<td>0.311</td>
</tr>
</tbody>
</table>

Above mixture is based on Type IP cements.
Urban Concrete Mix

• C-SUD Fly ash substitution rates
 Class C Max 35%
 Class F Max 25%
• Maximum combination rate is 20% Class C fly ash and 20% slag
Hydration (Creating C-S-H & CH)

- When calcium ions are super-saturated reactions kick off:
 - Calcium silicate hydrate (C-S-H, fiber-like particles)
 - Calcium hydroxide (CH, crystals)
- “Initial set” occurs when enough C-S-H forms to lock together.
Hydration (Creating C-S-H & CH)

Hydration is a series of irreversible chemical reactions between hydraulic cement and water.
How SCMs Work

Cement + Water → C-S-H

SCM + Water + CH → C-S-H
C-SUD Projects

Ankeny Reconstruction, 2017

- 0.40 w/cm ratio
- 44% coarse
- 15% intermediate (pea gravel)
- 41% fine
- 20% Class C Fly Ash
- Retarder
- Water reducer (handwork)
C-SUD Projects

Johnston, 2016

• QMC mix with limestone chip as third aggregate
 • Mix could have been specified as C-SUD – same mix requirements

• SCM replacement:
 • 20% Class C Fly Ash
 • 20% Slag
Monitor Added Water

- Ready-Mix trucks can add water at the grade
- Additional 30 revolutions recommended
- Document volume of water added
 ➢ Do not exceed max w/c ratio
 ➢ Know the specification for max w/cm ratio

Adding 1 gallon / cu. yd:
- Increases workability ~1”
- Lowers strength ~200 psi
- Increases drying shrinkage ~10%
- Increases permeability ~ 50%
Texture

SUDAS
Microtexture: Turf or Burlap Drag
Macrotexture: (when specified)

Iowa DOT
Microtexture: Turf or Burlap Drag
Macrotexture when speed limit is greater than 35 mph.
(Table 2301.03-1)

<table>
<thead>
<tr>
<th>Pavement/Placement Type</th>
<th>Macrotexture Orientation</th>
<th>Macrotexture Not Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainline - slip-form</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mainline - handwork</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Turn lanes - slip-form</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Turn lanes - handwork</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ramps - slip-form</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Ramps - handwork</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gapped sections of mainline - slip-form</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Gapped sections of mainline - handwork</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Radii</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Crossovers</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Paved Medians</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Shoulders</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Irregular Areas</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Bridge Approaches</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

1. Transverse macrotexture permitted for placements less than 600 feet in length.
2. Transverse tiling required unless longitudinal grooving in concrete is specified in the contract documents.
The Rules of Jointing

Things to Do
- Match existing joints or cracks
- Place joints to meet in-pavement structures
- Remember max. spacing
- Place isolation joints where needed
- Field adjustments are allowed!

Things to Avoid
- Panels < 1 ft wide
- Panels > 15 ft wide
- Angles < 60° (~90° is best)
- Odd Shapes (keep slabs square)
The Rules of Jointing

ACPA Wikipave

Google: Wikipave Joint Layout

10-Step Method for Jointing Intersections

Step 1

Step 2

Step 3

Step 4
Boxouts - General

- Pavement width changes
 - Intake and manhole locations
 - Curb returns
 - Accesses

- Rock placed in boxout to prevent filling with concrete

- Check forms for stability
- Paver setup
- Subgrade checks
- Depth checks
- Air/slump
- Paving summary
- Texture
Resources

• Iowa DOT PCC Paving Field Inspection

• ACPA WikiPave

• SUDAS Section 7010

• Iowa DOT Section 2301

• CP Tech Center
Questions and Discussion

Jerod Gross, P.E.

jgross@Snyder-associates.com

515-669-7644